Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Colombia and Ecuador sit at one of the most diverse tectonic regimes in the world, located at the intersection of five tectonic plates (Bird, 2003) encompassing many geophysical hazard regimes, multiple subduction zones, and broad diffuse areas of significant deformation. Notably, the subduction of the Nazca plate under South America has produced at least seven large (Mw 7) and damaging earthquakes since 1900—the largest being the 1906 Mw 8.8 event. Both Colombia and Ecuador have made significant investments in Global Navigation Satellite System (GNSS) networks to study tectonic and volcanic deformation. Earthquake early warning (EEW) systems like the U.S.-operated ShakeAlert system (Murray et al., 2018, 2023) utilize real-time Global Navigation Satellite System (RT-GNSS) to rapidly characterize the largest, most damaging earthquakes in situations where seismic networks alone saturate (Melgar et al., 2015, 2016; Allen and Melgar, 2019; Ruhl et al., 2019). Both Colombia and Ecuador have large vulnerable populations proximal to the coast that may sustain significant damage in these large subduction events (Pulido et al., 2020) and yet farther enough away that an RT-GNSS EEW system could offer significant warning times to these populations and associated infrastructure. We examine the status of the Servicio Geológico Colombiano Geodesia: Red de Estudios de Deformación GNSS network in Colombia and the Escuela Politécnica Nacional GNSS network in Ecuador, their spatial distribution, and the current status of their data streams to determine what augmentations are required to support the real-time detection and modeling of large destructive earthquakes in and near Colombia and Ecuador.more » « less
-
Abstract Rapid earthquake magnitude estimation from real-time space-based geodetic observation streams provides an opportunity to mitigate the impact of large and potentially damaging earthquakes by issuing low-latency warnings prior to any significant and destructive shaking. Geodetic contributions to earthquake characterization and rapid magnitude estimation have evolved in the last 20 yr, from post-processed seismic waveforms to, more recently, improved capacity of regional geodetic networks enabled real-time Global Navigation Satellite System seismology using precise point positioning (PPP) displacement estimates. In addition, empirical scaling laws relating earthquake magnitude to peak ground displacement (PGD) at a given hypocentral distance have proven effective in rapid earthquake magnitude estimation, with an emphasis on performance in earthquakes larger than ∼Mw 6.5 in which near-field seismometers generally saturate. Although the primary geodetic contributions to date in earthquake early warning have focused on the use of 3D position estimates and displacements, concurrent efforts in time-differenced carrier phase (TDCP)-derived velocity estimates also have demonstrated that this methodology has utility, including similarly derived empirical scaling relationships. This study builds upon previous efforts in quantifying the ambient noise of three-component ground-displacement and ground-velocity estimates. We relate these noise thresholds to expected signals based on published scaling laws. Finally, we compare the performance of PPP-derived PGD to TDCP-derived peak ground velocity (PGV), given several rich event datasets. Our results indicate that TDCP-PGV is more likely than PPP-PGD to detect intermediate magnitude (∼Mw 5.0–6.0) earthquakes, albeit with greater magnitude estimate uncertainty and across smaller epicentral distances. We conclude that the computationally lightweight TDCP-derived PGV magnitude estimation is complementary to PPP-derived PGD magnitude estimates, which could be produced at the network edge at high rates and with increased sensitivity to ground motion than current PPP estimates.more » « less
An official website of the United States government
